
Contx'act MDA-903-83-C-033

CD Compile-time Partitioning and Scheduling
of Parallel Programs

U Vivek Sarkar and John Hennessy
Computer Systems Laboratory T E

Stanford University MAR 9 ,g8U

for public rM-;o.e c1Ld . Df r
distribu~on is unlinittdo ' A '

Abstract reduces communication overhead for the entire program; such
Partitioning and scheduling techniques are necessary to an analysis cannot be done on the fly at run-time. Compile-

implement parallel languages on multiproccssors, time partitioning and scheduling also eliminates task
Multiprocessor performance i maximized when parallelism scheduling overhead and load balancing overhead at run-time.
betwtr tasks is optimally traded off with communication and A cile-time partitioner-cum-scheduler has been
synci•r">zation overhead. We present compile-time
partitioning and scheduling techniques to achieve this trade- mented to process program graphs in the Intermediate

off. language, IF1 [21]. IRI represents computation as dataflow
graphs, as described later in Section 6. A list of target
parameters (e.g. number of processors, communication

1. Introduction overhead, inter-processor distances) drives the partitioning for

One of the biggest challenges facing compiler wrters is to a given multiprocessor architecture. Using a front-end from

efficiently implement Programming languages on SISAL [15] to IFI, we apply this system to different

multiprocessors. We need to find compilation techniques for benchmark programs written in the single-assignment

general-purpose parallel languages; these techniques should language SISAL Like other functional languages, F.-'$ L ;,

be adaptable to a wide range of multiprocessor architectures, implicitly parallel; this eliminates the need 'ext -7.
parallelism from the program. However, our aproach is

There ame three fundamental problems to be solved when applicable to any environment where a .,*og.rzi X,?h
compiling a program for parallel execution on a representation can be obtained.
multiprocessor

1. Identifying potential parallelism. " ~2. Overview of our approach
2. Partitioning the program into sequential tasks.n

0.... 3. Scheduling the concurrent execution of these tasks. Our approach is to expose enough parallelism in the "mai
W . , . program" function graph and then assign computations to
We address the latter two problems and suggesltthat they processors so as to minimize the parallel execution time,

be solved at compile-time instead of run-time for applications while considering gp.mmumnlction overhead. As shown in
with fairly predictable execution times. In these cases the Figure 2-1ihffhe_ four basic steps in this process:

J- benefits am tremendous. A global, cnompile-time analysis 1. Cost Asslmnment: Traverse the program graph and
I s work hes been su ed b us Nat Science IOunafion Assign execution time costs to nodes andunder grant * DCR8351269 ad by the Detcns Reerch Proje;s communication Size costs to edges.

Agency under contract # MDA 903-83-C0335. 2. Graph Exnamnlon: Expand the graph so that the main
function contains sufficient parallelism to keep all
processors busy. Nodes In the expanded program
graph are mapped to tasks.

3. Internalization: Decide which tasks must go together
on the same processor, even if other processors are
available, This internailzcs their communication and

Preprint: To be presented at Sigplan '86 eliminates its overhead, at the expense of
sequentializlng the tasks.

4. Processor Assitnment: Assign taks to processors so
as to minimize parallel execution time. Tasks in the

, Lh-.uetnt has been approvrd I i s

same block of the internalized partition must be tasks, so that Ti -+ T forces Tto start only after Ti has
assigned to the same processor, completed execution.

The problem is to fred a valid schedule with the smallest

Program Graph completion time. This problem (along with several restricted

versions) has been shown to be NP-complete (14]. However,
there exist efficient scheduling algorithms that generate

Cost Assignnent schedules with a worst-case performance bound of 2. relative

to an optimal schedule [11]. Thus the NP-completeness of the
scheduling problem is not an impediment to achieving linear

Program Graph + Costs speed-up in multiprocessors.

This model is inadequate for our purpose because it ignores

Graxp ansion the overhead of inter-processor synchronization and
, communication. Most schemes for considering

communication overhead do so by separately maximizing

Expanded Program Graph (Tasks) parallelism and minimizing communication. We believe that
these parameters should be combined into a single objective
functio-.L The next section shows how we extend this model

LIternalization to incorporate communication costs.

n d a4. Modelling Communication Costs
Communication costs are represented by a communication

matrix. C[ij] is the size of communication (in bytes, say)
from task T, to T,. For simplicity, we assume that

Processor Assignment, communication only occurs along precedence edges, though
all precedence edges need not have an associated
communication. The data along a communication edge isExpanded Program Graph

i Pro grAimonly available to the consumer after the producer has
Processor Assignments completed execution. We also define an inter-processor

distance matrix; D[klJ gives the communication distance
Figure 2-1: Overview (number of hops) between processors k and 1. This is a

property of the multiprocessor rather than the tasks.
Note that we rely heavily on compile-time estimates of

Communication overhead in a multiprocessor has two

communication and computation costs. Theste costs drive the

expansion, internalization and scheduling of parallel tasks. components:

We have found that our cost estimates yield good partitions 1. Processor component - the duration for whi,;h a

for a range of programs and input data, processor participates in its communication.
2. Delay component - the fraction of communication

These four phases for compile-time partitioning and time during which the producer and consumer

scheduling are described in later sections. We begin with a processors are free to execute other tasks.

discussion of multiprocesso, models and real multiprocessors. Let n(i) be the processor to which task Ti is assigned. The
communication overhead for each non-local edge from Ti to

3. Multlprocessor Scheduling Theory Tj (i.e. (i) # n(j)) is modeled as:
Let's start by examining the traditional model for 1, Processr component - add to(C[i~j], D1[n(i),7t0)]) to

the cxecution time of task Ti, and
multiprocessor scheduling, which consists of: p(C.ij J, D3[n(i),n(j)]) to the execution time of Ti.

e P identical, independent processors. 2. Delay component - require that T not be able to start

* A set of N tasks, T = (Tt, T},) with execution times tilU 5,(C[ij], D[n(i),7(j)]) time has elapsed after T,
, .t-•pleted execution.

o A partial order -- on T. p, wo and o are simple functions for the costs of reading

The partial order describes precedence constraints on the inputs, writing outputs and communication delay respectively.

------------------ - - - ----

They convert communication size to execution time units for Because they use invalidation, the value of p is the cost of a
the target multiprocessor. So far, we have used functions of cache miss (i.e. a main memory access - on the order of 5-10
the form K, + K2xC[ij]xD[n(i),n(j)], where K, and K2 are cycles). Because writes are buffered and a write-through
constants. cache is used, writes will cost one cycle when there is no

We ignore the effect of communication demand on contention. Thus, the value of w0 depends primarily on bus

communication overhead in this model. This is valid when and main memory traffic. Bus contention increases the cost

the demand is less than the available bandwidth. If contention to read shared memory because cache misses take longer to

for communication resources is to be considered, it can be satisfy; it increases the cost to write shared memory, because

approximated by using average overhead values. delays may cause write stalls.

Synchrovization between tasks is modeled by Z Synchronization costs differ on these machines because

synchronization relation (boolean matrix) S. The pair <ij> is they use different hardware mechanisms for synchronization.

in S if task T must synchronize and wait for task T.'s The Sequent has 64 hardware "gates" that can be used to
completion. It jwould be safe to make S the same as the ensure mutual exclusion, making synchronization cheap. The

precedence relation .-4, but would be inefficient because -ý is Encore has a test-and-set instruction. The difficulty in

a partial order and contains transitive edges which lead to accurately modeling such machines is that the cost of various

unnecessary synchronizations. The communication matrix operations (reading and writing shared data and

does not entirely determine the synchronization relation, synchronization) depends on the amount of contention for

because some synchronizations are due to control

dependencies. Besides, the communication matrix can also A single bus architecture is fcesible for only a small
have transitive edges. So, for efficiency and generality, we number of processors. Interconnection networks ame used to
represent synchronization by a separate relation. support more processors in shared-memory machines like the

Ultracomputer. Communication and synchronizationEach pair <ij> in S adds to the execution times of inksk Ti overhead is modeled in basically the same way as single busand Tl due to signal and wait operations respectively. 'Me ovredimdedinbsalyteaewy igebuin os uet sga a wait is a es ct The architectures. There are two important differences: the time to
execution cost used for a wait is actually the cost of a access shared memory increases with the processor count
successful wait. Time spent spinning in a busy-wait loop is

considered to be idle time and is not added lo the task's (because of the interconnection network delay), and the

execution time. communication costs are less affected by contention.

Another important class of machines are those using point-
to-point communication. These include the Cosmic Cube, the

5. Real Multiprocessors Intel Advanced Scientific Processor and the NCube machine.
Multiprocessors are general-purpose, asynchronous, MIMD All of tiose machines use a boolean N-cube interconnect,

parallel machines. They can be classified as being "tightly which defines the distauce matrix. Since these machines use a
coupled" or "loosely coupled". Tightly coupled "message passing" approach we can easily model their
multiprocessors (e.g. -Sequent [19], Encore [81, communication properties. Assuming that communication
Ultracomputer [10], Cm* [12]) communicate through a shared contention is negligible, the following table summarizes the
memory. Loosely coupled multiprocessors (e.g. the Cosmic properties of the Cosmic Cube and Intel cube. The processor

Cube (18]) communicate by exchanging messages. Our component is for the initiating processor and is given as X +
model is designed to be tre,'able on this wide class of Y, where X is the start-up and Y is the cost per 100 bytes,
architecture-s nd we discuss how some of these machines are both in milliseconds. 'rhn delay component is in milliseconds
modeled in our system. per hop for each 100 bytes. Packetization introduces a

Machines like the Sequect and Encore communicate nonlinearity in communi*..;an costs, but we ignore this

through a single bus connected to a rhared memory and effect.

individual prcw:ssor caches. The communication overhead
consits entirely of its processor componcnt, since the Processor Delay

Machine Component Componentprocessors are directly involved in accessing the shared
memory. Also, the distance matrix is uniform, so that D[k,l] Cosnic Cube -.5 + 0.4 0.4
- 1 for ll pairs of processors. Functions p and u. for the Intel Cube 6.0 4.001 0.08
processor component represent the time takcn W respectively As we have indicated, the primary limitation of this model
read from or write u the shared memory. Bout machines use is its inability to deal with contention for communication or __

write-throv;h caches and invalidating snoopy caches. odes

c) Cvai

1 Cnd/or

Cop

synchronization resources. As we measure more problems output edges to be the same "variable". A few research

running on real machines, we believe that we can refine the projects are under way to address this problem. The

model to realistically accommodate such issues. SISAL [15] project includes code generation from IFI for the
Having discussed the target architectures, let's now VAX 780 and Cray-2 architectures. A project is under way at

Stanford to translate SAL (61 graphs (similar to IFI) to

examine the intermediate language used in our system. U-code (201. Our partitioner will benefit from all advances in
this field, as sequential code generation and optimization

6. IF1 Program Graphs techniques can be applied to intra-task computations.

Our compilation system operates on a graphical
representation of programs, namely IF1 [21]. IF1 is an 7
intermediate form for applicative languages. It is strongly 7. Cost Assignment
based on the features of single-assignment languages is to estimate computation and communication costs in the

toSA estmat coauato and comniain ot)i.h
SISAL [15] and VAL [1). program. Communication costs are determined by examining

An IFI program is a hierarchy of acyclic dataflow the dsta type of an edge and assessing its size in an

graphs [7]; the nodes denote operations and the edges carry appropriate unit (e.g. bytes). Estimation of node execution
data. Nodes are either simple or compound. A simple node's times is more difficult and is undecidable in general. The

outputs are direct functions of its inputs. IFi has about 50 unknown parameters are:
simple nodes, e.g. Plus, ArrayCatenate. FunctionCall. A * Ile frequency distribution of subgraphs in a compound
compound node contains subgraphs and its outputs depend on node (e.g. number of iterations for a While Body,

the interaction between these subgraphs. The following table probability distribution of Alternatives in a Select)
lists the five compound nodes available in IFI. These a Array size for nodes that operate on entire arrays.

compound nodes obviate the need for labels, goto's and * Recursion depth forrecursive function calls:

cycles in the program graph. Average node execution times are determined by using

Compound Node Subgraphs average values for these frequency parameters. These
frequency values can be estimated using simple rules of

Select Selector, Alternatives thumb, can be provided by the programmer through pragmas,
TagCase Alternatives (for Union) or can be derived from profile information. Our current

Forall Generator, Body, Results implementation uses profile data.
While,Given these parameters, it is a straightforward task to

Nodes have numbered ports connected by edges. An edge Give thes t tf a strgforwardotasketo

contains the node and port numbers of its producer and compute the cost of a node from the cost of its components
consmer It lsoconainsan ptinal ypenumer, hic is via a depth-first traversal of the program graph. The cost of acon sum er. It also co n tains an op tional type num ber, w hich isfu c i n al is d t r n e b y h e o t a s g ed o t e l e .

used for strongly typed languages like SISAL Literals are function call is determined by the cost assigned to the callee.
special edges used for constant values. A literal has no The strongly connected components (SCC's) in the call graph

producer - its value is given by a string. All data is carried by reveal groups of mutually recursive functions. The recursion
edges. No variables or memory locations are used. depth estimate is used to evaluate the costs of functions in the

same SCC. The reduced inter-SCC graph is acycic and is
Basic types include boolean, character, integer, real and traversed in topological order so that the callee's costs are

double. Arrays, streams, records and unions are used to assigned before processing the caller.
construct more complex types. Arrays are dynamically

extendible. Nodes and edges in IFl can use pragmas to carry

additional information. We use pragmas to store profile- 8. Graph Expansion

based frequency counts, communication and computation Given execution time costs, the next step is to create a set

costs, graph partitions and processor assignments. of parallel tasks. This phase begins by considering the body
of the "main program" function to be a single task and

This program graph representation is well suited for proceeds by recursively expanding the current tasks to reveal
compile-time partitioning and scheduling. However, more parallelism. A task containing an entire acyclic

generation of sequential machine code is more complicated dataflow graph can be replaced by a set of new tasks - one for

than from traditional, sequential intermediate languages. It is each node ii the graph. A task corresponding to a function
imperative to avoid unnecessary copying when an update-in- call node can be replaced by tasks for nodes in the callec's

place is possible. This effectively coalesces data on input and function body, as in convcntional procedure integration.

d

C

A Forall node is special because we know that all its with execution time less than c x (Total Program Cost) / P is
iterations can be executed in parallel. Thus a task for a Forall considered not worthwhile for further expansion. This
node can be replaced by S+2 new tasks - a Scatter task, S threshold value controls task granularity - 0.001 is a typical
sub-Forall tasks and a Gather task. The value of S is value for c. A smaller value of e usually increases the number
determined in part by F, the number of iterations in the of tasks and hence the execution time for compile-time
original Forall. Assuming that all iterations take the same partitioning. Programs with sufficient coarse-grain
time, the smallest S that yields an optimal completion time on parallelism are unaffected by e; a few expansions remove all
P processors is [F / [F/Pi 1. This makes S - P for large F. bottleneck nodes causing the expansion process to terminate

before tasks reach the granularity threshold size.
A task for a non-Forall compound node is replaced by a

task for each of its subgraphs. These subgraphs arm totally After task expansion, there is scope for further economy on
ordered by control dependencies, according to the semantics the number of tasks by merging small tasks when their total
of the compound node. This ordering avoids the possibility of cost is less than the threshold value. These small tasks are
wasted work through eager evaluation of (say) Alternative usually simple nodes (e.g. Plus, ArrayBuild) that were
subgraphs in a Select node. Instead, the Alternative will only exposed along with larger computations during task
start after the Selector has been evaluated, at which time it is expansion. By merging tasks, we map a set of IF1 nodes to a
known which Alternative should be evaluated. It's possible to single task. This set must:
perform a Parafrase-style [13] dependency analysis on While * Have a total execution time that's smaller than theexpressions and try to convert them to Forall's. This would threshold value.
be a compatible pre-pass to our partitioning system. We have e Form a convex subgraph of the original precedence
not pursued that approach because we assume that the graph so that the reduced precedence graph with the
programs were written with a view to parallelism, and leave it single merged task will still be acyclic. A simple way

rto use Forall's where appropriate, to form convex subgraphs is by picking intervals on any
to the programmer tlinear completion of the precedence graph.

We'd like the final task system to: * Form a connected subgraph so that it does not destroy
any parallelism outside the merged task.

e Contain sufficient parallelism for the given number of
processors, Task expansion and task merging partition the program

a Not have an impractically large number of tasks (e.g. graph nodes into tasks. Each task should either be a non-
one task per instruction is too many!). bottleneck or have a smaller execution time than the threshold

Both objectives can be conveniently quantified using costs, value. A task that satisfies neither property is expanded, if
The task system will have sufficient parallelism if no task is a possible. Tasks are merged if their total cost is still less than
bonl•,•ck. Task Ti is a bottleneck when all tasks that can be the threshold value. Both expansion and merging can be
executed in parallel with it together contain insufficient work incorporated in a single depth-first traversal of the program
to keep P-I processors busy during Ti's execution, i.e. graph. At each level, all subcomputations are first recursively

r paalll to T" costTr < (P- 1) x cost(T2) processed, which determines the expanded nodes. A second
Only bottleneck nodes are considered for further expansion, pass at the same level performs the merging, and then returns

to the parent level.

The problem of determining parallel tasks is equivalent to
finding the transitive closure of the graph's adjacency matrix.
Transitive closure algorithms have a worst-case execution 9. Internalization Pro-pass
time between O(N 25) and O(N3), making them impractical Once the task boundaries have been established, the
for large programs [5]. We use a divide-and-conquer problem is represented in terms of our model for
approach on the hierarchical structure of IF1 program graphs multiprocessor scheduling with communication. We have
to compute the path relation more efficiently. It is only tasks with execution times and communication edges. A

necessary to use the O(N 3) algorithm on dutaflow graphs at single pass scheduling algorithm is unsuitable for handling
each level. Their path relations are then efficiently combined communication costs. For example, in Figure 9-1, if tasks A
in a depth-first traversal of the entire hierarchy. This and B are assigned to different processors, a single pass

correspon Is to the notion of path-preserving homomorphic algorithm is later on forced to make one of CI or C2 non-
graph stin' tures [17], and makes it practical to determine the local, and incur its overhead. This is inevitable no matter how
path rei _ i for a large program graph. large C, or C2 may be. It could be avoided by backtracking

o oon previous assignments, but that would be too inefficient.
To , e a reasonable limit on the numbcr of tasks, we Instead, we first perform an Internalization pass that partitions

emr-i Jranularity Threshold Factor, e. Any computation

Im ai miNow&II&ww, il aA

tasks into blocks, so that all tasks in the same block must be of step 3, it has an O(N+E) worst-cas. execution time, for N
assigned to the same processor. After Internalization, a single tasks and E synchronization and communication edges.
pass Processor Assignment algorithm can be usad to assign Inputs: Tasks, costs, partition, priority list.
internalized task blocks to processors. Oupu:Completion

time.

Algorithm:

1. for each task T, do
Add non-local synchronization and communication
costs to Ti's execution time. (Use processor
component for communication)

Processor 1 Processor 2 end for
CI C2. for each block B do

BlockTime[B] +- 0

3. for each task T- in priority list order do
StartTime +- -

max(BlockTime[Block(T)],

Figure 9-1: Counter-example for one-pass scheduling CompletionTimefi] V <i,j> e S,
CompletionTime[i] + delay component of C[ij]
V non-local input communication C[ij])

W.The Internalization problem is to find a partition that Complet~ionTimeUj] +- StartTime + Exe cutionTin eie]
minimizes the critical path length of the task system, i.e. BlockTime[Block(T)i +- CompletionTime[j]
minimizes the completion time of the task system on an end for
unbounded number of processors. If we ignore 4. return max(CompletionTimeU] V tasks T?)
communication overhead, this optimal completion time can be Figure 9-2: Procedure DetermineCompletionTime

simply achieved by assigning each task to a different 7eitraiainagrtm a nON2(+)
processor. This is not so with communication costs, since the The internalization algorithm has an e (N2 ×(N+E))
optimal critical path may only occur when some parallel tasks execution time because there are E(N 2) cngt ies in DeIaCPL.

are assigned to the same processor. It is a harder problem and In the worst case, E = 0(N 2) , making this an O(N
4) algorithm.

is in fact NP-co- •lietC.

Just like the path relation in the previous section , the critical

So, we designed a greedy approximation algorithm to solve subgraphs. The algorithm incurs an 0(N4) worst-case

is i fat NPco-j' ltc.path

can be obtained by combining critical path values ef

this problem. It begins with the trivial partition that places execution time at each level, but is practical for large
each task in a separate block. It also maintains a table programs. Most programs have a small number (< 100) of
DcltaCPL[ij], which represents the decrease in the critical tasks at each level. We have seen programs with over 5000
path length obtained by merging blocks i and j. The nodes containing fewer than 20 tasks per level. This is
algorithm then iteratively merges the best pair of blocks - the because there's not much computation that can be expressed
pair that yields the largest decrease in the critical path length - without using compound nodes. Even if there are several
and terminates when no remaining merger could possibly simple nodes at the same level, they often get merged into a
reduce the critical path length (iLe. all entries in DcltaCPL are small number of tasks, due to the granularity threshold value.
negative). Though this is an approximation algorithm, we have shown

In computing the critical path length, we force all tasks in that it finds the optimal partition for a restricted class of
the same block to execute sequentially since they will be communication graphs, namely series-parallel graphs.
assigned to the same processor. There could be several Further, we have shown that this algorithm has a worst-case
possible task sequences consistent with the precedence performance bound of 2, relative to the optimal critical path.
constraints, and it's for that very reason that the problem is The proofs of these results are beyond the scope of this paper.
NP-complete. An algorithm that tries all possible sequences
will have a worst-case exponential time. instead we just use
an arbitrary topological order (priority list) to provide a 10. Processor Assignment
sequence for tasks in the same block. Figure 9-2 outlines the With the internalization pre-pass completed, the ground is
body of procedure DetermincCompletionTime, used to finally set for the actual assignment of tasks to processors.
compute the completion time for a given partition. Because Tasks in the same internalized block must be assigned to the

S --g e - mn --_ x

same processor. We use a modified Priority List scheduling 11. Code Generation Issues

algorithm [ll] to perform the processor assignment. An The output of the processor assignment phase consists ot P
outline of this algorithm is given in Figure 10-1. task sequences for P processors. Each task's computation is

InUt Tasks, costs, internalized partition, priority list. translated to sequential code, as in uniprocessor compilation.
However, synchronization primitives and communication

Outut Processor assignment for each task. code for any non-local synchronizations and communications

Algorithm: must be appropriately placed in a prologue and epilogue for
each task. These non-local synchronizations and

1. for each task T, do communications are barriers that must not be crossed when
Processorti] t- 0 optimizing and reordering instructions. Their rearrangement
end for could form a cycle in inter-processor synchronization and lead2. for proc - 1ito P doProcessorBlock procl --- o to deadlock during execution. Even if it avoided deadlock.end for the schedule would be different from the one chosen by our

3. for each task in priority list order do algorithm, and could have a larger parallel execution time.

If ProcessorU] - 0 then However, the code generator is free to reorder and optimize
instructions that do not cross an external synchronization or

a. for proc - I to P do communication. There should be a large scope for such
Call piocedure DetermineCompletionTime for
partition that merges blocks Block(T.) and conventional code optimizations, since we exploit outer-level

ProcessorBlock[proc]. parallelism and each task can have a lot of computation buried

Set BestProc to the value of proc witn the inside it.
smallest completion time.
end for

b. Merge blocks Block(T1) and 12. Preliminary Results
ProcessorBlock[Bestlloc]. As mentioned earlier, a partitioner-cum-scheduler based on

c. ProcessorBlock[BestProc] -- Block(Tj) these techniques has been implemented to process IF1
d. for each task T, with Block(T.) = Block(T.) do program graphs. We have instrumented the Livermoic IF1

Processor[i] +- BestProc interpreter to provide statistics for a multiprocessor
end for simulation. The simulation uses processor assignments

end if generated by the partitioner. Execution time values are based

end for on actual run-time frequencies and data sizes.

4. return Processor Figure 12-1 shows the speed-up obtained for the following

Figure 10-1: Procedure Schedule SISAL programs:

The algorithm visits tasks in priority list order, so that a 1. Towers of Hanoi. A program to solve the puzzle for a

task is only scheduled after all its predecessors have been tower of height 10. Graph expansion unwound the
recursive function calls to get a binary tree with FIg P1scheduled. Processor[J] stores the processor number for task levels. Hence the non-lincarity when the number of

Ti. It is initialized to zero and is set when visiting the first processors is a powei of 2.
task in T1's block. Like the Internalization algorithm, 2. Batcher's iterative merge-exchange sorting algorithm
Processor Assignment proceeds by merging blocks in the 1[0] on 100 integers. This is an excellent algorithm for
partition. It terminates when there are at most as many blocks parallel sorting. It consists of two nested While loops,each with log N iterations, and an inner Forall with N
as processors. At that time, all tasks Ti in iterations. Graph expansion successively expanded

ProcessorBlock~procl will have Proccssor[i] set to proc. the While bodies and finally the Forall, which contains

Once again, we use Procedure DetermineCompletionTime to the parallelism.

compute the completion time for a given partition. 3. Eight Queens - a recursive program to generate all
solutions to the 8 queens problem. A recursion depth

This algorithm has a worst-case O(Bx(N+E)) execution value of 8 directed the graph expansion algorithm to
time, where B is the number of internalized blocks. The expand the recursive call to 9 levels. The Forall at

scheduling problem does not lend itself to an efficient divide. each level was then expanded.

and-conquer algorithirl. as the path relation and critical path 4. Multi-precision multiplication. A divide-and-conquerstulutiun to thu p:ubicm of multiplying two N-bitproblems, because all sub-computations share the same set of numbers (] The algoft m bek nu bitnumbers (2]. Thec algorithm breaks each number into
processors. Instead, its efficiency lics in being able to assign halves, recursively finds 3 sub-products and combines
an entire block of tasks to a processor at a time. them to get the full product. Using 3 (instead of 4)

.o10 0 Towers of Hanoi
x Merge-exchange son.

.9 0 Eight queens
r.L 0 Muld-precision multiplication

6

4-

3

2

1

0 1 2 3 4 5 6 7 8 9 10
Number of Processors, P

Figure 12.1: Speed-up vs. Number of Processors

o Low partition - low target o Low overhead with internalization
x High partition- low target x Low overhead without internalization
o High panition - high target c3 Medium overhead with internalization

c, 10 < Low partition- high target a. 10 - 0 Medium overhead without internalization
F * Hi-gh overhead with internalization

S9 High overhead without internalization•8 •8
C) Cn

7 7

6 6

5 5-

4 4

3 3

2, 2-
1 1 -"- -.

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Number of Processors, P Number of Processors. P

Figure 12.2: Partition Overhead and Target Overhead Figure 12.3: Effect of Internalizaition phase

-1 j- r

recursive m i.tiplications makes this an O(NIS 3) architectures. Loop unrolling aud trace scheduling arn among
O(NI-9) algonthm (instead of N2). the techniques used to get more parallelism than that available

These speed-up curves show that compile-time processor within basic blocks. This is simiiar in spirit to our task

assignment can be successfully used to exploit parallelism, expansion, except that we start at the outermost level and

We'd like to make similar speed-up measurements on real move inwards looking for parallelism at the macro level The

machines, e.g. Sequent, Encore, iPSC. That will be possible Bulldog approach attempts to generate a set of synchronous,

when the translator from IFI to U-code is ready. Another fine-grained parallel operations that can be "packed" into a uSapproach is to translate IFI to C. We have already hand-coded single wide instruction word. The primary technique used to

the partitioned merge-exchange sort program in C and find parallelism is local expansion of basic blocks. Our

observed linear speed-up on the Sequent (12 processors) and partitioner is targeted to asynchronous multiprocessors, which

Encore (20 processors). perform most efficiently with coarse-grain parallelism.

Figure 12-2 illustrates the match between a partition and its In the Hughes Data Flow Machine compiler [5). dataflow

target multiprocessor parameters. These measurcmeuts were nodes (actors) are statically allocated to processing elements.

taken for the Towers of Hanoi program, using two sets of The allocation is based on heuristics to minimize

target parameters that represent low and high communication communication and maximize parallelism. The heuristic

overhead. The four curves show all four combinations of the functions use inter-processor distances and a count of parallel

two partitions with the two targets. Naturally, the low actors; they do not consider the frequency count of individual

overhead target curves show a better speed-up than the high actors or the communication size of data. Static allocation of
overhead target. But, for a given target, the partition that was an actor causes all its invocations to be sequential, since they

generated for it performed better than the other partition. are executed on the same processing element. This can
reduce parallelism for an actor in the body of a Forall or in a

Figure 12-3 shows the effect of the Internalization phase on function called more than once in parallel. We address the
partitioning. The SISAL program used was a simple matrix problem by task expansion, so that different sub-Forall's or
multiplication of two 20x20 integer matrices. The program different calls to the same function can be executed on
was partitioned and simulated for three sets of target different processors. It is necessary to do a transitive closure
parameters representing low, medium and high of the dataflow graph to determine parallel actors. Their
communication overhead. Two partitions were generated in "local allocator" uses an O(N-) transitive closure algorithm
each case - one with and one without using the Internalization and took 3 VAX CPU hours to schedule 415 actors. Because
phase. As seen in the figure, the partition with Internalization of this high cost, they use a "global allocator" to approximate
perforn.c4 betL.r, CSJ)L.:•y for high communication the heuristics by partitioning the graph and set of processing
overhead. elements into separate pieces that can be individually handled

by the local allocator. Transitive closure is done more

13. Related Work efficiently in our partitioner, because we exploit the program

As mentioned in the introduction, a compiler system for graph hierarchy to determine the path relation, e.g. it took
only 10 VAX CPU secords for a program graph with over

parallel machines must deal with the problems of extracting 1500 nodes.
parallelism, partitioning the program into tasks and
scheduling tasks. The major effort so far has been in solving
the first problerm. Kuck's Parafrase [13J, [16] and the Rice 14. Conclusions
vectorizer [3] have been successful in extracting parallelism We have demonstrated that the problem of partitioning and
from Fortran programs. They have been used for vector scheduling parallel programs can be solved at compile-time.

machines, where partitioning and scheduling is not an issue. Our techniques are practical and have been implemented to
This parallelism is typically local, since gl,,bal parallelism process IFI program graphs. They rely on estimates ofafrequency parameters, which we obtain from execution profile

1h from a sequential language. Both these systems could be used data.
to produce an IFI-like graph reprcscntation that serves as
input to our partitioner. Whether such an approach would be These techniques do not assume any particular

effective depends on the ability of these systems to recognize multiprocessor architecture. Instead, they are driven by a

larger-grain parallelism, table of parameters that describe the target multiprocessor.

-The Buildog compiler [9] utwaf;Ls iocai paraiiciism and The Lxntzal issue in partitioning and scheduling is the

schedules operations for VLIW (Very Long Instruction Word) trade-off between parallelism .and the overhead of

,. _

synchi 'ization and communication. We use costs to 15. McGraw, J. etal. SISAL Streams and Iteration in a
incorpuii.e these overhead.i in our model for multiprocessor Single Assignment Language. Language Reference Manual,
s.heduling. Version 1.2. M-146, LLNI, March, 1985.

16. Padua, D. A., Kuck, D. J. & Lawrie, D. H. "High-Speed
The implementation has already been used to partition Multiprocessors and Compilation Techniques". IEEE Trans.

many benchmark programs, and the simulation results arm Computers C-29, 9 (1980).
very encouraging. As more multiprocessors become 17. PfaltzJ. L.. Computer Data Structures. McGraw-HUIl,
available, we will use this implementation as a basis to Inc., 1977.
compare alternative architectures and their interaction with 18. Seitz, C. L "Te Cosmic Cube". CACM 28, 1 (Jan.
different application programs. 1985).

References 19. Using the Sequent Balance 8000. Argonne National

1. Ackerman, W. B. & Dennis, . B. VAL-- a value-oricted Laboratory, Mathematics and Computer Science Division,
algorithmic language. Preliminary reference manual. ANLIMCS-TM-66, 1986.
MIT/LCS/TR-2 18, Laboratory for Computer Science, MIT, 20. Sites, R. a al. Machine-independent Pascal Optimizer
June, 1979. Project: Final Report. UCSD/CS-79/038, University ofS2. Aho, A. V., Hopcroft, J. E., Ullman, J. D.. The Design and California at San Diego, Nov., 1979.
Analysis of Computer Algorithmr. Addison-Wesley, 1974. 21. Skedzielewski, S. & Glaucrt, J. IF1 - An Intermediate

Form for Applicative Languages, Version 1.0. M-170,3. Allen, 3. R. & Kennedy, K. PFC: A Program to Convert LLNI., July, 1985.
Fortran to Parallel Form. The Proceedings of the IBM
Conference on Parallel Computers and Scientific
Computations, March. 1982.

4. Batcher, K. E. "Sorting networks and their applications".
1968 Spring Joint Computer Conf., AFIPS Proc. 32 (1968),307-314.

5. Campbell, M. L Static Allocation for a Dataflow
Multiprocessor. Proc. 1985 lot. Conf. Parallel Processing,
1985, pp. 511-517.

6. Celoni, J. R. & Hennessy, J. L. SAL A Single-
Assignment Language for Parallel Algorithms.
ClaSSiC-83-01, Center for Large Scale Scientific
Computation, Stanford University, Sept., 1983.

7. Davis, A. L. & Keller, R. M. "Data Flow Program
Graphs". IEEE Computer 15, 2 (Feb. 1982).

8. Using the Encore Multimax. Argonne National
Laboratory, Mathematics and Computer Science Division,
ANLdMCS-TM-65, 1986.

9. Fisher, J. A. et al. "Parallel Processing: A Smart Compiler
and a Dumb Machine". SIGPLAN Notices 19.6 (June 1984).

10. Gottlieb, A. et at. "The NYU Ultracomputer - Designing
an MIMD Shared Memory Parallel Computer". IEEE Trans.
Computers C-32, 2 (Feb. 1983).

11. Graham, R. L. "Bounds on Multiproccssing Timing
Anomalies". SIAM J. Appl. Math. 17, 2 (March 1969).

12. Jones, A. K., Geh'inger, E. F. The Cm* Multiprocessor
PmojccLt A Research Review. CMU-CS-80-131, Computer
Science Department, Carnegie-Mellon University, 1980.

13. Kuck. D. J. et al. Dependence Graphs and Compiler
Optimizations. Proc. 8th ACNM Symp Principles
Programming Languages, Jan., 1981, pp. 207-218.

14. Lenstra, J. K. & Rinnooy Kan, A. H. G. "Complexity of
Scheduling und.-r P.........c
Research 26, 1 (Jan-Fcb 1978).

I\

TH-IS DOCUMENT S BEST

QUALI Y AVAILABLE. TIE COPY

FURNISHIED TO DTIC CONTAINED

A SIGNFICANT NUMBER OF

A EG -WHICH DO NOT

ýýEROuu- E GILY.

THIS DOCUMENT CONTAINED
REPRODUCED FROM BLANK PAGES THAT HAVE

BEST AVAILABLE COPY BEEN DELETED

